Part Number Hot Search : 
20H100 KT817A TB62008P PTD3216 HSP9520 01118 03209906 A3957SA
Product Description
Full Text Search
 

To Download UPD160061N-XXX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 DATA SHEET
MOS INTEGRATED CIRCUIT
PD160061
384-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES)
DESCRIPTION
The PD160061 is a source driver for TFT-LCD's capable of dealing with displays with 64-gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values -corrected by an internal D/A converter and 5-by-2 external power modules. Because the output dynamic range is as large as VSS2 + 0.2 V to VDD2 - 0.2 V, level inversion operation of the LCD's common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequency of 65 MHz when driving at 2.7 V, this driver is applicable to XGA-standard TFT-LCD panels and SXGA TFT-LCD panels.
FEATURES
* * * * * * * * * * * * * CMOS level input (2.3 to 3.6 V) 384 outputs Input of 6 bits (gray-scale data) by 6 dots Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter (R-DAC) Logic power supply voltage (VDD1): 2.3 to 3.6 V Driver power supply voltage (VDD2): 7.5 to 9.5 V High-speed data transfer: fCLK = 65 MHz MAX. (internal data transfer speed when operating at VDD1 = 2.7 V) 40 MHz MAX. (internal data transfer speed when operating at VDD1 = 2.3 V) Output dynamic range: VSS2 + 0.2 V to VDD2 - 0.2 V Apply for dot-line inversion, n-line inversion and column line inversion Output voltage polarity inversion function (POL) Input data inversion function (capable of controlling by each input port) (POL21, POL22) Apply for heavy load, light load Semi slim-chip shaped
ORDERING INFORMATION
Part Number Package TCP (TAB package) COF (COF package)
PD160061N-xxx PD160061NL-xxx
Remark
The TCP's/COF's external shape are customized. To order the required shape, so please contact one of our sales representatives.
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
Document No. S15843EJ3V0DS00 (3rd edition) Date Published June 2004 NS CP (K) Printed in Japan
The mark shows major revised points.
2002
PD160061
1. BLOCK DIAGRAM
STHR R,/L CLK STB
64-bit bidirectional shift register
C1 C2 C3 - - - - - - - - - - - - - - - - - - - - - - C63 C64
STHL VDD1 VSS1
D00 to D05 D10 to D15 D20 to D25 D30 to D35 D40 to D45 D50 to D55 POL21 POL22 SRC LPC HPC
Data register
POL
Latch
VDD2 Level shifter VSS2
V0 to V9
D/A converter
Voltage follower output
-------------------------------S1 S2 S3 S384
Remark /xxx indicates active low signal.
2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER
S1 S2 S383 S384
V0 : V4 V5 : V9
5 MultiPlexer 6-bit D/A converter 5
POL
2
Data Sheet S15843EJ3V0DS
PD160061
3. PIN CONFIGURATION (Copper foil surface) (PD160061N-xxx: TCP (TAB package): Face-up/ PD160061NL-xxx: COF (COF package): Face-down)
STHL D55 D54 D53 D52 D51 D50 D45 D44 D43 D42 D41 D40 D35 D34 D33 D32 D31 D30 VDD1 LPC R,/L V9 V8 V7 V6 V5 VDD2 VSS2 V4 V3 V2 V1 V0 HPC VSS1 SRC CLK STB POL POL21 POL22 D25 D24 D23 D22 D21 D20 D15 D14 D13 D12 D11 D10 D05 D04 D03 D02 D01 D00 STHR
S384 S383 S382 S381
IC Pad Surface
S4 S3 S2 S1
Remark This figure does not specify the TCP or COF package.
Data Sheet S15843EJ3V0DS
3
PD160061
4. PIN FUNCTIONS
(1/2)
Pin Symbol S1 to S384 D00 to D05 D10 to D15 D20 to D25 D30 to D35 D40 to D45 D50 to D55 R,/L Shift direction control Input These refer to the start pulse I/O pins when driver ICs are connected in cascade. Fetching of display data starts when H is read at the rising edge of CLK. R,/L = H (right shift): STHR input, S1S384, STHL output R,/L = L (left shift): STHL input, S384S1, STHR output STHR Right shift start pulse input/output STHL Left shift start pulse input/output CLK Shift clock input Input I/O These refer to the start pulse I/O pins when driver ICs are connected in cascade. Fetching of display data starts when H is read at the rising edge of CLK. When right shift: STHR input, STHL output When left shift: STHL input, STHR output A high level should be input as the pulse of one cycle of the clock signal. If the start pulse input is more than 2CLK, the first 1CLK of the high-level input is valid. Refers to the shift register's shift clock input. The display data is incorporated into the data register at the rising edge. At the rising edge of the 64th after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver. If 66th clock pulses are input after input of the start pulse, input of display data is halted automatically. The contents of the shift register are cleared at the STB's rising edge. STB Latch input Input The contents of the data register are transferred to the latch circuit at the rising edge. And, at the falling edge of the STB, the gray scale voltage is supplied to the driver. When STB = H period, driver output level is Hi-Z (High impedance). It is necessary to ensure input of one pulse per horizontal period. POL Polarity input Input POL = L: The S2n-1 output uses V0 to V4 as the reference supply. The S2n output uses V5 to V9 as the reference supply. POL = H: The S2n-1 output uses V5 to V9 as the reference supply. The S2n output uses V0 to V4 as the reference supply. S2n-1 indicates the odd output, and S2n indicates the even output. Input of the POL signal is allowed the setup time (tPOL-STB) with respect to STB's rising edge. POL21, POL22 Data inversion input Input Data inversion can invert when display data is loaded. POL21: D00 to D05, D10 to D15, D20 to D25, data inversion can invert display data POL22: D30 to D35, D40 to D45, D50 to D55, data inversion can invert display data POL21, POL22 = H: Data inversion loads display data after inverting it. POL21, POL22 = L: Data inversion does not invert input data. LPC, HPC Bias current control input Input Please refer to panel loads and driver power supply voltage (VDD2), when set up these pins. Refer to 10. BIAS CURRENT CONTROL BY LPC AND HPC. LPC pin is pulled down to the VSS1 inside the IC, HPC pin is pulled up to the VDD1 inside the IC. Pin Name Driver output Display data input I/O Input Description The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6 dots (2 pixels). DX0: LSB, DX5: MSB Output The D/A converted 64-gray-scale analog voltage is output.
4
Data Sheet S15843EJ3V0DS
PD160061
(2/2)
Pin Symbol SRC Pin Name High driving time control I/O Input Description This pin is set up to high drive time of the output amplifier. Please decide the pin setting refer to panel loads and one horizontal period. SRC pin is pulled up to the VDD1 inside the IC. SRC = H or open: High drive time 64 CLK (Normally period mode) SRC = L: High drive time 128 CLK (Long time mode) Refer to 9. SRC AND HIGH DRIVE TIME. V0 to V9
-corrected power
supplies
-
Input the -corrected power supplies from outside by using operational amplifier. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. VDD2 - 0.2 V V0 > V1 > V2 > V3 > V4 0.5 VDD2 VDD2 - 0.3 V > V5 > V6 > V7 > V8 > V9 VSS2 + 0.2 V
VDD1 VDD2 VSS1 VSS2
Logic power supply Driver power supply Logic ground Driver ground
- - - -
2.3 to 3.6 V 7.5 to 9.5 V Grounding Grounding
Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order. Reverse this sequence to shut down. 2. To stabilize the supply voltage, please be sure to insert a 0.1 F bypass capacitor between VDD1 to VSS1 and VDD2 to VSS2. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 F is also recommended between the -corrected power supply terminals (V0, V1, V2,....., V9) and VSS.
Data Sheet S15843EJ3V0DS
5
PD160061
5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE
The PD160061 incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode voltage. The D/A converter consists of ladder resistors and switches. The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel -compensated voltages to V0' to V63' and V0" to V63" is almost equivalent, resistor ratio is shown in Figure 5-2. For the 2 sets of five -compensated power supplies, V0 to V4 and V5 to V9, respectively, input gray scale voltages of the same polarity with respect to the common voltage. When fine-gray scale voltage precision is not necessary, there is no need to connect a voltage follower circuit to the compensated power supplies V1 to V3 and V6 to V8. Figure 5-1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2 and VSS2, common electrode potential VCOM, and -corrected voltages V0 to V9 and the input data. Be sure to maintain the voltage relationships of below. VDD2 - 0.2 V V0 > V1 > V2 > V3 > V4 0.5 VDD2 0.5 VDD2 - 0.3 V V5 > V6 > V7 > V8 > V9 > VSS2 + 0.2 V Figures 5-2 indicates -corrected voltages and ladder resistors ratio. Figures 5-3 indicates the relationship between the input data and output voltage. Figure 5-1. Relationship between Input Data and -corrected Power Supplies
VDD2 0.2 V V0
16
V1 16 V2 V3 16 15 V4 0.5 VDD2 0.3 V V5 15 V6 V7 V8 16 16 Split interval
16
V9 0.2 V VSS2 00 10 20 Input data (HEX.) 30 3F
6
Data Sheet S15843EJ3V0DS
PD160061
Figure 5-2. -corrected Voltages and Ladder Resistors Ratio
V0 r0 V1' r1 V2' r2 V3' r3 r59 r60 V60'' r61 V61'' V0' V5 r62 V62'' V63''
rn r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 r44 r45 r46 r47 r48 r49 r50 r51 r52 r53 r54 r55 r56 r57 r58 r59 r60 r61 r62 Ratio 8.5 7.5 7.0 6.5 6.0 5.5 5.5 5.0 5.0 4.0 4.0 3.5 3.5 3.5 3.0 3.0 3.0 2.5 2.5 2.5 2.0 2.0 2.0 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 2.0 2.0 2.5 2.5 3.0 5.0 8.0 Value (TYP.) 800 750 700 650 600 550 550 500 500 400 400 350 350 350 300 300 300 250 250 250 200 200 200 150 150 150 150 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 150 150 150 200 200 250 250 300 500 800
r14 V15' r15 V1 r16 V17' r17 V16' V6
r49 V49'' r48 V48'' r47 V47'' r46
r46 V47' r47 V3 r48 V49' r49 V48' V8
r17 V17'' r16 V16'' r15 V15'' r14
r60 V61' r61 V62' r62 V4 V63' V9
r2 V2'' r1 V1'' r0 V0''
Cautions 1. There is no connection between V4 and V5 terminal in the IC. 2. The resistance ratio is a relative ratio in the case of setting the resistance minimum value to 1.
Data Sheet S15843EJ3V0DS
7
PD160061
Figure 5-3. Relationship between Input Data and Output Voltage (POL21, POL22 = L) Output Voltage 1: VDD2 - 0.2 V V0 > V1 > V2 > V3 > V4 0.5 VDD2 Output Voltage 2: 0.5 VDD2 - 0.3 V V5 > V6 > V7 > V8 > V9 VSS2 + 0.2 V
Input Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH V0' V1' V2' V3' V4' V5' V6' V7' V8' V9' V10' V11' V12' V13' V14' V15' V16' V17' V18' V19' V20' V21' V22' V23' V24' V25' V26' V27' V28' V29' V30' V31' V32' V33' V34' V35' V36' V37' V38' V39' V40' V41' V42' V43' V44' V45' V46' V47' V48' V49' V50' V51' V52' V53' V54' V55' V56' V57' V58' V59' V60' V61' V62' V63' Output Voltage 1 V0 V1+(V0-V1)x 7250 / V1+(V0-V1)x V1+(V0-V1)x V1+(V0-V1)x V1+(V0-V1)x V1+(V0-V1)x V1+(V0-V1)x V1+(V0-V1)x V1+(V0-V1)x V1+(V0-V1)x V1+(V0-V1)x V1+(V0-V1)x V1+(V0-V1)x V1+(V0-V1)x V1+(V0-V1)x V1 V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2+(V1-V2)x V2 V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3+(V2-V3)x V3 V4+(V3-V4)x V4+(V3-V4)x V4+(V3-V4)x V4+(V3-V4)x V4+(V3-V4)x V4+(V3-V4)x V4+(V3-V4)x V4+(V3-V4)x V4+(V3-V4)x V4+(V3-V4)x V4+(V3-V4)x V4+(V3-V4)x V4+(V3-V4)x V4+(V3-V4)x V4 3350 / 3250 / 3150 / 3050 / 2950 / 2800 / 2650 / 2500 / 2300 / 2100 / 1850 / 1600 / 1300 / 800 / 3450 3450 3450 3450 3450 3450 3450 3450 3450 3450 3450 3450 3450 3450 1500 / 1400 / 1300 / 1200 / 1100 / 1000 / 900 / 800 / 700 / 600 / 500 / 400 / 300 / 200 / 100 / 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 2450 / 2200 / 1950 / 1700 / 1500 / 1300 / 1100 / 950 / 800 / 650 / 500 / 400 / 300 / 200 / 100 / 2750 2750 2750 2750 2750 2750 2750 2750 2750 2750 2750 2750 2750 2750 2750 6500 / 5800 / 5150 / 4550 / 4000 / 3450 / 2950 / 2450 / 2050 / 1650 / 1300 / 950 / 600 / 300 / V0'' V1'' V2'' V3'' V4'' V5'' V6'' V7'' V8'' V9'' V10'' V11'' V12'' V13'' V14'' V15'' V16'' V17'' V18'' V19'' V20'' V21'' V22'' V23'' V24'' V25'' V26'' V27'' V28'' V29'' V30'' V31'' V32'' V33'' V34'' V35'' V36'' V37'' V38'' V39'' V40'' V41'' V42'' V43'' V44'' V45'' V46'' V47'' V48'' V49'' V50'' V51'' V52'' V53'' V54'' V55'' V56'' V57'' V58'' V59'' V60'' V61'' V62'' V63'' Output Voltage 2 V9 V9+(V8-V9)x 800 V9+(V8-V9)x V9+(V8-V9)x V9+(V8-V9)x V9+(V8-V9)x V9+(V8-V9)x V9+(V8-V9)x V9+(V8-V9)x V9+(V8-V9)x V9+(V8-V9)x V9+(V8-V9)x V9+(V8-V9)x V9+(V8-V9)x V9+(V8-V9)x V9+(V8-V9)x V8 V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V8+(V7-V8)x V7 V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V7+(V6-V7)x V6 V6+(V5-V6)x V6+(V5-V6)x V6+(V5-V6)x V6+(V5-V6)x V6+(V5-V6)x V6+(V5-V6)x V6+(V5-V6)x V6+(V5-V6)x V6+(V5-V6)x V6+(V5-V6)x V6+(V5-V6)x V6+(V5-V6)x V6+(V5-V6)x V6+(V5-V6)x V5 100 200 300 400 500 650 800 950 1150 1350 1600 1850 2150 2650 / / / / / / / / / / / / / / 3450 3450 3450 3450 3450 3450 3450 3450 3450 3450 3450 3450 3450 3450 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 / / / / / / / / / / / / / / / 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 300 550 800 1050 1250 1450 1650 1800 1950 2100 2250 2350 2450 2550 2650 / / / / / / / / / / / / / / / 2750 2750 2750 2750 2750 2750 2750 2750 2750 2750 2750 2750 2750 2750 2750 1550 2250 2900 3500 4050 4600 5100 5600 6000 6400 6750 7100 7450 7750
8050 8050 8050 8050 8050 8050 8050 8050 8050 8050 8050 8050 8050 8050 8050
/ / / / / / / / / / / / / / /
8050 8050 8050 8050 8050 8050 8050 8050 8050 8050 8050 8050 8050 8050 8050
8
Data Sheet S15843EJ3V0DS
PD160061
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN
Data format : 6 bits x 2 RGBs (6 dots) Input width : 36 bits (2-pixel data) (1) R,/L = H (Right shift)
Output Data S1 D00 to D05 S2 D10 to D15 S3 D20 to D25 S4 D30 to D35 ... ... S383 D40 to D45 S384 D50 to D55
(2) R,/L = L (Left shift)
Output Data S1 D00 to D05 S2 D10 to D15 S3 D20 to D25 S4 D30 to D35 ... ... S383 D40 to D45 S384 D50 to D55
POL L H
S2n-1
Note
S2n
Note
V0 to V4 V5 to V9
V5 to V9 V0 to V4
Note S2n-1 (Odd output), S2n (Even output)
Data Sheet S15843EJ3V0DS
9
PD160061
7. RELATIONSHIP BETWEEN STB CLK AND OUTPUT WAVEFORM
Figure 7-1. Input Circuit Block Diagram
Output AMP.
DAC
+
VAMP(IN) SW1 Sn (VX)
Figure 7-2. Output Circuit Timing Waveform
[1]
CLK
[1']
tSTB-CLK
STB
SW1: OFF
VAMP(IN)
Sn(VX)
Hi-Z
STB = H is loaded with the rising edge of CLK[1]. However, when not satisfying the specification of fSTB-CLK, STB = H is loaded with the rising edge of the next CLK[1]. Latch operation of display data is completed with the falling edge of the next CLK which loaded STB = H. Therefore, in order to complete latch operation of display data, it is necessary to input at least 2 CLK in STB = H period. Besides, after loading STB=H to the timing of [1], it is necessary to continue inputting CLK.
10
Data Sheet S15843EJ3V0DS
PD160061
8. RELATIONSHIP BETWEEN STB, POL AND OUTPUT WAVEFORM
When the STB is high level, all outputs became Hi-Z and the gray-scale voltage is output to the LCD in synchronization with the falling edge of STB. Therefore, high drive time of the output amplifier as below is determined by the CLK number of the required SRC pin setting. Be sure to avoid using such as extremely changing the CLK frequency (ex. CLK stop).
STB
Inside bias current
High drive time
High drive time
High drive time
POL
V0 - V4 Vx (odd output)
V5 - V9
V5 - V9
Vx (even output) V5 - V9 V0 - V4 V0 - V4
Hi-Z
Hi-Z
Hi-Z
9. SRC AND HIGH DRIVE TIME
The PD160061 can control high drive time of the output amplifier by SRC pin logic (refer to below figure). SRC = H or open (high drive time: standard mode): High drive time (PWhp) of the output amplifier is in 64 CLK period from falling edge of the STB. SRC = L (high drive time: long-term mode): High drive time (PWhp) of the output amplifier is in 128 CLK period from falling edge of the STB.
STB
CLK PWhp Inside bias current
We recommend a thorough simulation of the output amplifier in advance when set the SRC pin.
Data Sheet S15843EJ3V0DS
11
PD160061
10. BIAS CURRENT CONTROL BY LPC AND HPC
The PD160061 can control the bias current of the output amplifier in high drive period and low drive period.
Bias Current High H L or open L or open H LPC L L H or open H or open Light HPC Panel Load Heavy
Middle Normal Low
We recommend a thorough simulation of the output amplifier in advance, when set the LPC and HPC pins. Refer to the table below for the example of the combination of setting level and panel load, with driver part supply voltage.
Example of Condition Example 1 Load: RL = 5 k, CL = 75 pF Driver part supply voltage: VDD2 = 7.5 V Example 2 Load: RL = 5 k, CL = 75 pF Driver part supply voltage: VDD2 = 9.0 V Example 3 Load: RL = 40 k, CL = 80 pF Driver part supply voltage: VDD2 = 9.0 V LPC L or open L HPC H or open SRC
Bias current mode: Middle L or open H or open H or open
Bias current mode: Normal H L L
Bias current mode: High
12
Data Sheet S15843EJ3V0DS
PD160061
11. ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (TA = 25C, VSS1 = VSS2 = 0 V)
Parameter Logic Part Supply Voltage Driver Part Supply Voltage Logic Part Input Voltage Driver Part Input Voltage Logic Part Output Voltage Driver Part Output Voltage Operating Ambient Temperature Storage Temperature Symbol VDD1 VDD2 VI1 VI2 VO1 VO2 TA Tstg Rating -0.5 to +4.0 -0.5 to +10.0 -0.5 to VDD1 + 0.5 -0.5 to VDD2 + 0.5 -0.5 to VDD1 + 0.5 -0.5 to VDD2 + 0.5 -10 to +75 -55 to +125 Unit V V V V V V C C
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended Operating Range (TA = -10 to +75C, VSS1 = VSS2 = 0 V)
Parameter Logic Part Supply Voltage Driver Part Supply Voltage High-Level Input Voltage Low-Level Input Voltage Symbol VDD1 VDD2 VIH VIL V0 to V4 V5 to V9 7.5 V VDD1 9.5 V 7.5 V VDD1 < 8.5 V 8.5 V VDD1 9.5 V Driver Part Output Voltage Clock Frequency VO fCLK 2.3 V VDD1 < 2.7 V 2.7 V VDD1 3.6 V Condition MIN. 2.3 7.5 0.7 VDD1 0 0.5 VDD2 0.2 0.2 0.2 8.5 TYP. MAX. 3.6 9.5 VDD1 0.3 VDD1 VDD2 - 0.2 0.5 VDD2 - 0.3 0.5 VDD2 VDD2 - 0.2 40 65 Unit V V V V V V V V MHz MHz
-Corrected Voltage
Data Sheet S15843EJ3V0DS
13
PD160061
Electrical Characteristics (TA = -10 to +75C, VDD1 = 2.3 to 3.6 V, VDD2 = 7.5 to 9.5 V, VSS1 = VSS2 = 0 V)
Parameter Input Leak Current High-Level Output Voltage Low-Level Output Voltage Symbol IIL VOH VOL R IVOH IVOL Output Voltage Deviation Output Swing Difference Deviation Logic Part Dynamic Current Consumption
Note2, 3, 4
Condition Except LPC, HPC, SRC LPC, HPC, SRC STHR (STHL), IOH = 0 mA STHR (STHL), IOL = 0 mA V0 to V4 = V5 to V9 = 4.0 V, VDD2 = 8.5 V VDD2 = 8.0 V, VX = 7.0 V, VOUT = 6.5 V VDD2 = 8.0 V, VX = 1.0 V, VOUT = 1.5 V TA = 25C, VDD1 = 3.3 V, VDD2 = 8.5 V, VOUT = 2.0 V, 4.25 V, 6.5 V VDD1
Note1 Note1
MIN.
TYP.
MAX. 1.0 150
Unit
A A
V V k
VDD1 - 0.1 0.1 7.9 20 10 3 4 20 15 12 15.8 23.7 - 20
-Corrected Resistance
Driver Output Current
A A
mV mV mA
VO VP-P IDD1
Driver Part Dynamic Current Consumption
Note2, 4
IDD22
VDD2, with no load
3.5
8
mA
Notes 1. VX refers to the output voltage of analog output pins S1 to S384. VOUT refers to the voltage applied to analog output pins S1 to S384. 2. Specified at fSTB = 65 kHz and fCLK = 54 MHz. 3. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern. 4. Refers to the current consumption per driver when cascades are connected under the assumption of XGA single-sided mounting (8 units). Switching Characteristics (TA = -10 to +75C, VDD1 = 2.3 to 3.6 V, VDD2 = 7.5 to 9.5 V, VSS1 = VSS2 = 0 V)
Parameter Start Pulse Delay Time Symbol tPLH1 tPLH1 Driver Output Delay Time tPLH2 tPLH3 tPHL2 tPHL3 Input Capacitance CI1 CI2 Condition CL = 15 pF, 2.3 V VDD1 < 2.7 V CL = 10 pF, 2.7 V VDD1 3.6 V CL = 10 pF, 2.3 V VDD1 < 2.7 V CL = 10 pF, 2.7 V VDD1 3.6 V CL = 75 pF, RL = 5 k, LPC = L or open, HPC = H or open, SRC = H or open Logic input of exclude STHR (STHL), TA = 25C STHR (STHL), TA = 25C 5 pF MIN. TYP. MAX. 20 10.5 20 10.5 5 8 5 8 10 Unit ns ns ns ns
s s s s
pF
RLn = 1 k, CLn = 15 pF
The measurement point RL1 Output CL1 GND CL2 CL3 CL4 CL5 RL2 RL3 RL4 RL5
14
Data Sheet S15843EJ3V0DS
PD160061
Timing Requirements (TA = -10 to +75C, VDD1 = 2.3 to 3.6 V, VSS1 = 0 V, tr = tf = 5.0 ns)
Parameter Clock Pulse Width Symbol PWCLK Condition 2.3 V VDD1 < 2.7 V 2.7 V VDD1 3.6 V Clock Pulse High Period PWCLK(H) 2.3 V VDD1 < 2.7 V 2.7 V VDD1 3.6 V Clock Pulse Low Period PWCLK(L) 2.3 V VDD1 < 2.7 V 2.7 V VDD1 3.6 V Data Setup Time Data Hold Time Start Pulse Setup Time Start Pulse Hold Time POL21, POL22 Setup Time POL21, POL22 Hold Time STB Pulse Width Last Data Timing STB-CLK Time Time Between STB and Start Pulse POL-STB Time STB-POL Time tSETUP1 tHOLD1 tSETUP2 tHOLD2 tSETUP3 tHOLD3 PWSTB tLDT tSTB -CLK tSTB-STH tPOL-STB tSTB-POL STB CLK STB STHR(STHL) POL or STB STB POL or MIN. 25 15 6 4 6 4 4 0 4 0 4 0 2 2 9 2 -5 6 TYP. MAX. Unit ns ns ns ns ns ns ns ns ns ns ns ns CLK CLK ns CLK ns ns
Remark Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.
Data Sheet S15843EJ3V0DS
15
16
PWCLK(L) 1 t SETUP2 STHR (1st Dr.) t SETUP1 D n0 to D n5 INVALID t HOLD1
D373 to D378 D379 to D384 D385 to D390 Last Data
SWITCHING CHARACTERISTICS WAVEFORM (R,/L = H)
Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.
PWCLK 2
PW CLK(H) 3 64 65 66
1
2
90%
tr
tf VDD1
CLK
10%
VSS1 VDD1 VSS1
t HOLD2
t STB-CLK
t STB-STH VDD1 INVALID
D1 to D6 D 7 to D12
D1 to D6 D7 to D12
VSS1
t SETUP3 POL21, POL22 INVALID
t HOLD3 VDD1 INVALID VSS1 tPLH1 VDD1 VSS1 t LDT PWSTB VDD1
Data Sheet S15843EJ3V0DS
STHL (1st Dr.)
STB VSS1 t POL-STB POL VSS1 tPLH3 Hi-Z tPLH2 t STB-POL VDD1
Sn (VX)
Target Voltage: +10% - Target Voltage: + 2% -
PD160061
t PHL2 tPHL3
PD160061
12. RECOMMENDED MOUNTING CONDITIONS
The following conditions must be met for mounting conditions of the PD160061. For more details, refer to the Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html). Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under different conditions.
PD160061N - xxx: TCP (TAB package)
Mounting Condition Thermocompression Mounting Method Soldering ACF (Adhesive Conductive Film) Condition Heating tool 300 to 350C, heating for 2 to 3 seconds, pressure 100 g (per solder) Temporary bonding 70 to 100C, pressure 3 to 8 kg/cm , time 3 to 5 seconds. Real bonding 165 to 180C, pressure 25 to 45 kg/cm , time 30 to 40 seconds. (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd.)
2 2
Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more mounting methods at a time.
Data Sheet S15843EJ3V0DS
17
PD160061
NOTES FOR CMOS DEVICES
1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN). 2 HANDLING OF UNUSED INPUT PINS Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device. 3 PRECAUTION AGAINST ESD A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices. 4 STATUS BEFORE INITIALIZATION Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
18
Data Sheet S15843EJ3V0DS


▲Up To Search▲   

 
Price & Availability of UPD160061N-XXX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X